Finite Quantum Tomography and Semidefinite Programming
نویسندگان
چکیده
منابع مشابه
Finite quantum tomography via semidefinite programming
Using the the convex semidefinite programming method and superoperator formalism we obtain the finite quantum tomography of some mixed quantum states such as: qudit tomography, N-qubit tomography, phase tomography and coherent spin state tomography, where that obtained results are in agreement with those of References [21, 24, 25, 4, 26].
متن کاملDesigning optimal quantum detectors via semidefinite programming
We consider the problem of designing an optimal quantum detector to minimize the probability of a detection error when distinguishing between a collection of quantum states, represented by a set of density operators. We show that the design of the optimal detector can be formulated as a semidefinite programming problem. Based on this formulation, we derive a set of necessary and sufficient cond...
متن کاملOptimum quantum error recovery using semidefinite programming
Andrew S. Fletcher,* Peter W. Shor, and Moe Z. Win Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Received 7 June 2006; publishe...
متن کاملSemidefinite Programming and Integer Programming
2 Semidefinite Programming: Duality, Algorithms, Complexity, and Geometry 3 2.1 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Geometry . . ...
متن کاملSemidefinite Programming
3 Why Use SDP? 5 3.1 Tractable Relaxations of Max-Cut . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1.1 Simple Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.2 Trust Region Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.3 Box Constraint Relaxation . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.4 Eigenvalue Bound . . . . . . . . . . . . ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Theoretical Physics
سال: 2006
ISSN: 0020-7748,1572-9575
DOI: 10.1007/s10773-006-9287-9