Finite Quantum Tomography and Semidefinite Programming

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite quantum tomography via semidefinite programming

Using the the convex semidefinite programming method and superoperator formalism we obtain the finite quantum tomography of some mixed quantum states such as: qudit tomography, N-qubit tomography, phase tomography and coherent spin state tomography, where that obtained results are in agreement with those of References [21, 24, 25, 4, 26].

متن کامل

Designing optimal quantum detectors via semidefinite programming

We consider the problem of designing an optimal quantum detector to minimize the probability of a detection error when distinguishing between a collection of quantum states, represented by a set of density operators. We show that the design of the optimal detector can be formulated as a semidefinite programming problem. Based on this formulation, we derive a set of necessary and sufficient cond...

متن کامل

Optimum quantum error recovery using semidefinite programming

Andrew S. Fletcher,* Peter W. Shor, and Moe Z. Win Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Received 7 June 2006; publishe...

متن کامل

Semidefinite Programming and Integer Programming

2 Semidefinite Programming: Duality, Algorithms, Complexity, and Geometry 3 2.1 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Geometry . . ...

متن کامل

Semidefinite Programming

3 Why Use SDP? 5 3.1 Tractable Relaxations of Max-Cut . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1.1 Simple Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.2 Trust Region Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.3 Box Constraint Relaxation . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.4 Eigenvalue Bound . . . . . . . . . . . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Theoretical Physics

سال: 2006

ISSN: 0020-7748,1572-9575

DOI: 10.1007/s10773-006-9287-9